

ASX ANNOUNCEMENT 13/06/2024

LEIA RETURNS WIDE INTERSECTIONS AND HIGH-GRADE ZONES 105.3M AT 1.1% Li₂O AND 84.8M @ 1.3% Li₂O

Highlights

Drilling continues to confirm Leia as a thick, tabular, spodumene-dominant pegmatite outcropping from surface. New assays show continuous wide and high-grade zones:

- o 105.3m @ 1.1% Li₂O from 213.7m (TARC259AD) (est. true width)
 - Including 43.4m @ 1.4% Li₂O from 239.0m
- 84.8m @ 1.3% Li₂O from 251.4m (TADD020) (est. true width)
 - Including <u>53.6m</u> @ <u>1.5%</u> Li₂O from 251.4m
- o 71.7m @ 1.0% Li₂O from 220.0m (TARC230D) (54.9m est. true width)
 - Including 41.7m @ 1.5% Li₂O from 250.0m (31.9m est. true width)
- o 70.0m @ 1.1% Li₂O from 265.0m (TADD021) (est. true width)
 - Including 41.0m @ 1.3% Li₂O from 278.0m
- 64.6m @ 1.1% Li₂O from 262.7m (TARC277AD) (54.9m est. true width)
 - Including 46.0m @ 1.5% Li₂O from 264.0m (39.1m est. true width)
- 67.0m @ 1.1% Li₂O from 351.0m (TARC265D) (est. true width)
- o 45.0m@1.3% Li₂O from 164.0m (TARC236) (est. true width)
 - Including 29.0m @ 1.4% Li₂O from 180.0m
- Leia pegmatite outcrops from surface, is 2.2km long, and is on Mining Leases less than 80km from Port Hedland, WA
- Wildcat is well funded with \$90.1 million cash at end of Q3

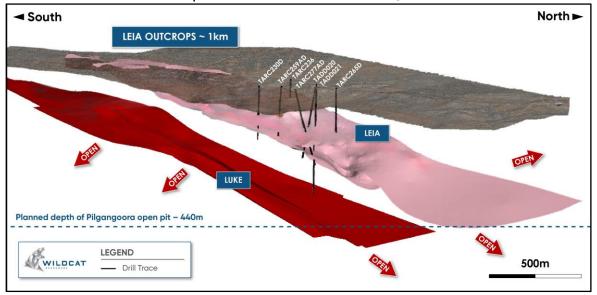


Figure 1 – Isometric illustration of Leia and Luke Pegmatites. Black traces represent newly reported significant intersections from Leia. For simplicity other drill traces are removed and Chewy, Han and Hutt are not displayed.

Australian lithium explorer and developer Wildcat Resources Limited (ASX: WC8) ("Wildcat" or the "Company") is pleased to announce high-grade lithium results from the Leia Pegmatite, reinforcing the growing potential of its Tabba Tabba Lithium Project, near Port Hedland, in the Pilbara region of Western Australia.

Managing Director AJ Saverimutto said: "Today's drill results continue to give us confidence that there are higher grade zones in Leia not previously defined. Our understanding of the pegmatite increases as infill drilling progresses. In the upcoming period, we will continue to drill Leia whilst also exploring the Luke discovery to unlock its potential, and maintain an aggressive program of drilling new search spaces across Tabba Tabba. Shareholders can also look forward to our maiden drill programs at both Boltcutter East and Pilgangoora North, pending finalisation of the heritage surveys."

Highlighted drill results are illustrated on the figures and results are presented in Appendix 1.

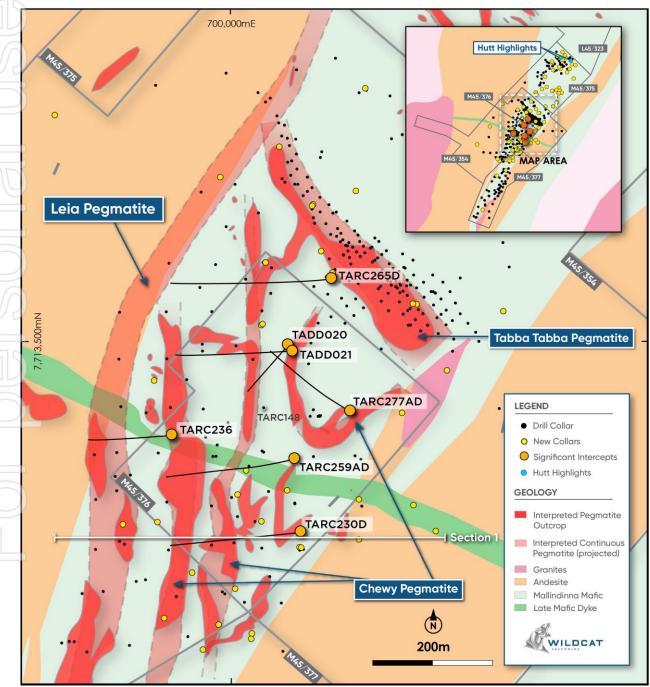


Figure 2 – Plan view of drilling (previously reported: black, new: yellow) at Leia since ASX Announcement dated 10 April 2024. Drill collars with significant intercepts appearing in the highlights are displayed in orange. Section line relates to Figure 4.

Background

Tabba Tabba is **near some of the world's largest hard-rock lithium mines**, 47km from Pilbara Minerals' (ASX: PLS) 414Mt Pilgangoora Project¹, 87km from Mineral Resources' (ASX: MIN) 259Mt Wodgina Project² and is only 80km by road to Port Hedland's port and located on **granted Mining Leases**.

Since acquiring the Tabba Tabba project a year ago, and commencing drilling in July 2023, **Wildcat has drilled ~90,310m**, comprising 228 RC holes for 52,874m and 89 diamond drill holes for 37,436m. Drilling continues and further updates are expected over the coming months.

Exploration has defined a 3.2km long LCT pegmatite field hosting at least six significant pegmatite bodies (Leia, Luke, Chewy, Tabba Tabba, Han and Hutt). Most drilling to date has focused on the major spodumene-dominant Leia deposit, which is 2.2km long, with mineralisation at surface and intercepted more than 500m vertical. Leia now possesses a series of intercepts wider than 80m in true thickness at grades over 1% Li₂O and several intercepts through the central part of the pegmatite greater than 100m in true thickness above 1% Li₂O (see page 8 & 9). These features highlight Leia's potential as a world class pegmatite-hosted lithium deposit.

Results at Leia continue to increase confidence in the significance of the discovery, the consistency in lithium grade and the delineation of high-grade zones, which are expected to positively influence the future economics of the project. The thick and tabular nature of Leia is different to most deposits discovered globally where systems typically consist of smaller 5-15m wide pegmatites stacked inside waste rock units considered deleterious to the final saleable product. It is anticipated that this thick geometry will be beneficial in retaining grade with minimal dilution in potential mining scenarios.

As described in Figure 1, the planned future depth of the nearby Pilgangoora pit is 440m vertical from surface. Drilling by Wildcat has focused on delineating the pegmatites at Tabba Tabba down to a comparable depth and will continue to define additional lithium mineralisation in this space as a priority. New infill drill results are defining higher grade zones within the Leia orebody that were not previously defined and these zones continue to expand into areas previously modelled as lower grade sections of pegmatite. This increased level of confidence will be important as the company moves towards a maiden Mineral Resource estimate and commences a Pre-Feasibility Study.

New drill hole data received since the last Leia announcement (10 April 2024) is summarised in Appendix 1 and significant results are discussed below and illustrated in Figures 1, 2, 3 & 4. A total of 3,324 samples from 19 diamond holes and 25 RC holes are pending analysis at the laboratory. A further update is expected in the coming month.

Leia Drilling

Leia continues to return exceptional results (highlights in Figure 3) with 105.3m@1.1% Li₂O from 213.7m (TARC259AD) (est. true width) including 43.4m@1.4% Li₂O from 239.0m demonstrating that Leia has the potential to be considered a large pegmatite with the optionality of reporting as a high-grade but more tightly constrained body. The result from TARC259AD was more than 100m south of the previously reported 180m@1.1% Li₂O from 206m (TARC148) (est. true width). TARC277AD intercepted Leia roughly 200m northeast of the previously reported TARC148 intercept and returned 64.6m@1.1% Li₂O (54.9m est. true width) from 262.7m (TARC277AD) (est. true width) including 46.0m@1.5% Li₂O (39.1m est. true width) from 264.0m. These holes demonstrate that thick pegmatite mineralisation returning more than 1% Li₂O persists over considerable strike lengths, which includes thick zones of internal high grade.

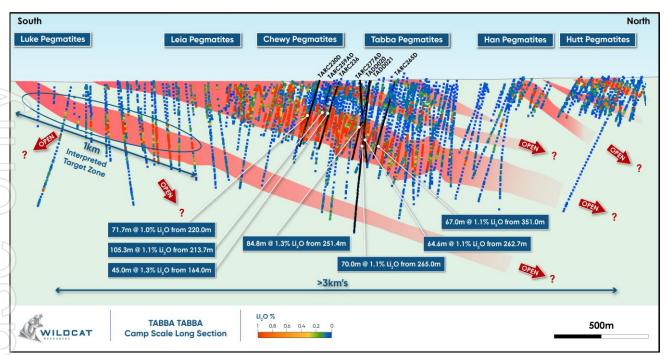


Figure 3 – A longitudinal section of the Tabba Tabba pegmatite field with sample grade distribution utilising existing assays. The 7 holes which appear in the highlights are labelled.

Ongoing drilling at Leia has focused on confirming and extending the lateral boundaries of known mineralisation inside the pegmatite both up-dip and down-dip on existing drill sections. The drilling has successfully achieved this in multiple positions and an example is provided in Figure 4. TARC230D returned 71.7m @ 1.0% Li₂O from 220.0m (TARC230D) (54.9m est. true width) Including 41.7m @ 1.5% Li₂O from 250.0m (31.9m est. true width) which was drilled approximately 50m downdip from hole TARC162D which had previously returned 62.3m @ 1.0% Li₂O from 223.2m. This section illustrates wide and consistent grades throughout the Leia Pegmatite, with a previous NSI being returned in the Leia position in TARC224 due to a cross cutting dolerite dyke. As infill drilling continues, the geology team are becoming more effective at modelling out dykes, structures and alteration events which cause local grade variation. This means that where possible these events can be spatially constrained resulting in a reduced impact on the overall grade of the pegmatite.

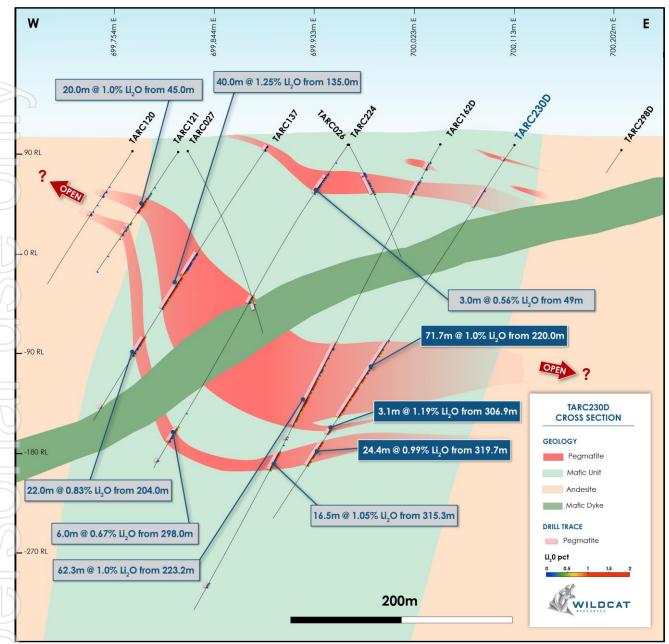


Figure 4 – Cross section through newly reported drillhole TARC230D displaying intercepts in downhole width, represented by "Section 1" on Figure 2. Results demonstrate wide consistent grades throughout the Leia pegmatite.

Drilling at Leia will focus on areas which require additional drilling to continue extending and discovering high grade zones and to help aid geological modelling of the structures which control these domains.

Additional exceptional intercepts not mentioned in the highlights include:

- 34.0 @ 1.0% Li₂O from 25.0m (TARC222D) (30.0m est. true width)
 - o Including 20.0 @ 1.6% Li₂O from 39.0m (17.6m est. true width)
- 41.5 @ 0.9% Li₂O from 368.5m (TADD016) (est. true width)
 - o Including <u>23.0m @ 1.6% Li</u>2O from 371.0m

Other Pegmatites

Exploration drilling continues across the Tabba Tabba Mining Leases, testing new target concepts and extending existing pegmatite discoveries. Drilling at The Hutt Pegmatite has identified additional high-grade mineralisation including <u>6.0m@1.4% Li₂O</u> from 79m and <u>12.0m@1.1% Li₂O</u> from 88m (TARC069) (est. true width) and <u>10.0m@1.3% Li₂O</u> from 60.0m (TARC327) (est. true width). Although smaller than the Luke and Leia discoveries, the lithium mineralisation at The Hutt Pegmatite is open, and the opportunity to continue to grow this discovery remains with further drilling planned.

A new program has commenced at the Chewy North target, where previous intercepts indicated that mineralisation in this pegmatite is open to the north and down dip, indicating a newly discovered zone potentially favourable for lithium mineralisation on the northeastern side of the more favourable host stratigraphy (gabbro). This is interpreted to be caused by a subtle change in litho-geochemistry internal to the gabbro. Wildcat will provide updates on this in the coming months as exploration progresses.

Next Steps

- Maintain aggressive exploration drilling of the Luke Pegmatite
- Ongoing resource and extension drilling of the giant Leia Pegmatite
- Continue to test other targets at the Tabba Tabba Mining Leases
- Continue planning for initial drill programs at Pilgangoora North and Boltcutter East
- Progress permitting and evaluation studies for Tabba Tabba.

This announcement has been authorised by the Board of Directors of the Company.

ENDS -

FOR FURTHER INFORMATION, PLEASE CONTACT:

Mr. AJ Saverimutto

Managing Director

Tel: +61 (8) 6555 2950

info@wildcatresources.com.au

Mr. Matthew Banks

Executive Director

Tel: +61 (8) 6555 2950

info@wildcatresources.com.au

Nathan Ryan

NWR Communications

Tel: +61 420 582 887

nathan.ryan@

nwrcommunications.com.au

About Tabba Tabba

The Tabba Tabba Lithium-Tantalum Project is an advanced lithium and tantalum exploration project that is located on granted Mining Leases just 80km by road from the port of Port Hedland, Western Australia. It is nearby some of the world's largest hard-rock lithium mines (47km by road from the 414Mt Pilgangoora Project¹ and 87km by road to the 259Mt Wodgina Project²).

The Tabba Tabba project was one of four significant LCT pegmatite projects in WA, previously owned by Sons of Gwalia. The others were Greenbushes, Pilgangoora and Wodgina which are now Tier-1 hard-rock lithium mines. Tabba Tabba is the last of these assets to be explored for lithium mineralisation.

Figure 5 – Location of the Tabba Tabba Project

Wildcat announced that it had entered an exclusive, binding agreement to acquire 100% of the Tabba Tabba Lithium-Tantalum Project on the 17th of May, 2023³. On the 5th October, 2023 the

https://1pls.irmau.com/site/pdf/3c3567af-c373-4c3c-ba7a-af0bc2034431/Substantial-Increase-in-Mineral-Resource.pdf

¹ Pilbara Minerals Ltd ASX announcement 7 August 2023:

² Mineral Resources Ltd ASX announcement 23 October 2018: http://clients3.weblink.com.au/pdf/MIN/02037855.pdf

³ ASX announcement 17th May 2023: https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf

Company provided an update on the progress of the acquisition⁴ and on 12th October, 2023 Wildcat announced it has successfully completed the acquisition of the Project.

Thirty-eight (38) outcropping pegmatite bodies have been mapped within the Mining Leases at Tabba Tabba, however only the pegmatite body hosting the Tabba Tabba Tantalum deposit had been extensively drilled and most of the samples were not assayed for lithium. The lack of drilling offered significant upside for Wildcat for lithium exploration.

The pegmatite body that contains the high-grade Tabba Tabba tantalum deposit has a Mineral Resource estimate of 318Kt at 950ppm Ta_2O_5 for 666,200lbs Ta_2O_5 at a 400ppm Ta_2O_5 lower cut-off grade³. The resource drilling on the Tabba Tabba pegmatite was limited to only 35m depth, and the tantalum mineralisation is open in most directions.

Only four drill holes were completed outside of the Tabba Tabba tantalum deposit, these were drilled in 2013 and three intersected pegmatite that returned **8m at 1.42% Li₂O from 4m (TDRC02)**, **16m at 0.9% Li₂O from 10m (TDRC03) and 1m at 2.00% Li₂O from 40m to EOH (TDRC04)**. This single pegmatite has an outcrop expression that is 300m long³.

In May 2023 Wildcat commenced exploration activities with a drone photographic survey to map and validate the pegmatite outcrops on the Tabba Tabba mining tenements⁵. The Company announced that it had identified substantially more pegmatite outcrop through interpretation of the drone data in July 2023⁶.

Also in July 2023, Wildcat commenced an RC drilling program to systematically explore the Tabba Tabba mining tenement package for lithium mineralisation⁷. A major lithium discovery was announced by the Company on the 18th September, 2023⁸ after assay results confirmed thick intersections of lithium mineralised pegmatites were returned from multiple RC holes in the central and northern pegmatite clusters. Wildcat is continuing with an aggressive and systematic campaign of RC and DD drilling across the Mining Leases and to explore and evaluate this very significant lithium tantalum project.

Leia is emerging as a Tier-1 lithium pegmatite. Some of the best intercepts from Leia previously announced include:

- o 180.0m @ 1.1% Li₂O from 206.0m (TARC148) (est. true width)
- o 119.2m @ 1% Li₂O from 334.3m (TADD010) (est. true width)
- o 105.3m @ 1.1% Li₂O from 213.7m (TARC259AD) (est. true width)
- o 99.0m @ 1.2% Li₂O from 207.0m (TARC234D) (est. true width)
- 85.0m at 1.5% Li₂O from 133.0m (TARC128) (est. true width)
- 85.0m at 1.3% Li₂O from 167.0m (TARC144) (est. true width)
- 84.8m @ 1.3% Li₂O from 251.4m (TADD020) (est. true width)
- 73.0m at 1.1% Li₂O from 266.0m (TARC246) (est. true. width)
- o 70.0m @ 1.1% Li₂O from 265.0m (TADD021) (est. true width)
- o 70.0m at 1.0% Li₂O from 183.0m (TARC145) (est. true width)

⁴ ASX announcement 5th October 2023: https://www.investi.com.au/api/announcements/wc8/79100ff0-b08.pdf

⁵ ASX announcement 31st May 2023: https://www.investi.com.au/api/announcements/wc8/20e4fead-fa5.pdf

⁶ ASX announcement 5th June 2023: https://www.investi.com.au/api/announcements/wc8/f08da5f1-19e.pdf

⁷ ASX announcement 14th July 2023: https://www.investi.com.au/api/announcements/wc8/0d6e63aa-fbc.pdf

⁸ ASX announcement 18th September 2023: https://www.investi.com.au/api/announcements/wc8/bd9e13dc-76f.pdf

- o 69.9m @ 1.2% Li₂O from 399.0m (TARC245D) (est. true width)
- 64.4m @ 1.3% Li₂O from 225.0m (TARC154AD) (est. true width)
- 67.0m @ 1.1% Li₂O from 351.0m (TARC265D) (est. true width)
- o 60.3m at 1.4% Li₂O from 297.8m (TARC161AD) (est. true width)
- o 62.3m at 1.0% Li₂O from 223.2 m (TARC162D) (est. true width)
- o 52.0m at 1.3% Li₂O from 117.0m (TARC131) (est. true width)

The newly discovered Luke is materialising as an additional and significant lithium pegmatite. Some of the best intercepts from Luke announced include:

- 54.4m @ 1.2% Li₂O from 267.9m (TADD030) (est. true width)
 - and 20.5m @ 1.5% Li2O from 297.5m
 - and 25.0m @ 1.2% Li2O from 363.9m
- o 43.0m @ 1.4% Li₂O from 316m (TARC348D) (est. true width)
 - including 23.0m @ 1.7% Li2O from 317.0m
 - and 6m @ 2.2% Li2O from 415.0m
 - and 43.4m @ 1.1% Li2O from 412.0m
 - and 10.0m @ 1.5% Li2O from 430.0m
- 44.0m @ 1.1% Li₂O from 189m (TARC353) (est. true width)
 - including 31.0m @ 1.5% Li2O from 189.0m
 - and 26.6m @ 1.5% Li₂O from 305.5m (TARC346D) (est. true width)
 - including 23.0m @ 1.7% Li₂O from 317.0m

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Wildcat Resources Limited's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Wildcat Resources Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Competent Person's Statement

The information in this announcement that relates to Exploration Results for Tabba Tabba Project is based on, and fairly represents, information compiled by Mr Torrin Rowe, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Rowe is a fulltime employee of Wildcat Resources Limited. Mr Rowe has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Rowe consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

No New Information or Data: This announcement contains references to exploration results, Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all of which have been cross-referenced to previous market announcements by the relevant Companies. Wildcat confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. In the case of Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived

from the production targets, all material assumptions and technical parameters underpinning the estimates, production targets and forecast financial information derived from the production targets contained in the relevant market announcement continue to apply and have not materially changed in the knowledge of Wildcat.

This document contains exploration results and historic exploration results as originally reported in fuller context in Wildcat Resources Limited ASX Announcements - as published on the Company's website. Wildcat confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. In the case of Mineral Resource estimates, Ore Reserve estimates, production targets and forecast financial information derived from the production targets, all material assumptions and technical parameters underpinning the estimates, production targets and forecast financial information derived from the production targets contained in the relevant market announcement continue to apply and have not materially changed in the knowledge of Wildcat.

Appendix 1

Table 1: Significant intercepts for Leia, Chewy, Hutt and Han - Assays reported 0.1% Li₂O cut-off grade with 10m internal dilution for aggregated intercepts and geological interpretation has been used for defining margins of internal high-grade zones. Widths are rounded to one decimal and grades to two decimals.

Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li2O %)	Prospect
TADD013	392.0	400.0	8.0	8.0	1.11	Leia
and:	410.0	412.0	2.0	2.0	0.57	Leia
and:	435.6	436.6	1.0	1.0	0.59	Leia
and:	459.0	488.0	29.0	29.0	0.75	Leia
including	468.0	469.0	1.0	1.0	1.40	Leia
and:	479.0	485.0	6.0	6.0	2.25	Leia
TADD016	368.5	410.0	41.5	41.5	0.94	Leia
including	371.0	394.0	23.0	23.0	1.61	Leia
TADD019	57.0	63.3	6.3	6.3	1.12	The Hutt
	0-1.1	200.0			4.07	
TADD020	251.4	336.2	84.8	84.8	1.27	Leia
including	251.4	305.0	53.6	53.6	1.49	Leia
also including	308.9	335.0	26.1	26.1	1.04	Leia
and:	387.4	393.2	5.8	5.8	1.00	Leia
including	389.1	392.5	3.4	3.4	1.64	Leia
TADD021	265.0	335.0	70.0	70.0	1.08	Leia
	265.0					
including	271.0	274.0	3.0	3.0	1.99	Leia
also including	278.0	319.0	41.0	41.0	1.34	Leia
and:	344.0	369.0	25.0	25.0	1.10	Leia
including	352.0	367.0	15.0	15.0	1.64	Leia
and:	405.4	425.5	20.1	20.1	0.90	Leia
including	407.3	418.0	10.7	10.7	1.26	Leia
TADD023	26.0	34.0	8.0	8.0	0.57	Chewy
including	26.0	31.0	5.0	5.0	0.84	Chewy
and:	177.0	187.0	10.0	10.0	0.96	Leia
and:	213.5	222.8	9.3	9.3	1.15	Leia
TARROS	400.7	400.0	T 50		0.50	01
TADD025	103.7	109.0	5.3	5.3	0.50	Chewy
and:	273.4	276.8	3.4	3.4	0.50	Leia
and:	286.0	299.0	13.0	13.0	0.52	Leia
including	291.0	294.0	3.0	3.0	1.22	Leia
and:	297.0	298.0	1.0	1.0	1.79	Leia

Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li2O %)	Prospec
and:	363.0	366.0	3.0	3.0	1.30	Leia
and:	398.0	422.0	24.0	24.0	1.10	Leia
including	398.0	413.0	15.0	15.0	1.54	Leia
and:	418.0	419.0	1.0	1.0	1.32	Leia
		1	T	T	1	
TADD026	145.0	150.0	5.0	5.0	0.54	Leia
including	147.0	148.0	1.0	1.0	1.30	Leia
and:	201.0	202.0	1.0	1.0	0.62	Leia
and:	247.1	249.0	1.9	1.9	0.72	Leia
/		T	T	T	T	
TADD028	35.7	37.0	1.3	1.3	1.39	Leia
/	191.0	197.2	6.2	6.2	0.60	Leia
including	191.0	196.0	5.0	5.0	0.68	Leia
TARC040	153.0	162.0	9.0	9.0	0.52	Han
including	156.0	158.0	2.0	2.0	1.10	Han
also including	156.0	160.0	4.0	4.0	0.89	Han
atoo motaamg	100.0	100.0	-110	4.0	0.00	- Train
TARC056	0.0	7.0	7.0	7.0	0.7	The Hut
including	1.0	2.0	1.0	1.0	1.3	The Hut
also including	3.0	5.0	2.0	2.0	1.1	The Hut
and:	16.0	17.0	1.0	1.0	0.8	The Hut
and:	128.0	129.0	1.0	1.0	0.7	The Hut
TARC069	79.0	85.0	6.0	6.0	1.43	The Hut
and:	88.0	100.0	12.0	12.0	1.07	The Hut
and:	187.0	189.0	2.0	2.0	0.81	The Hut
TARC077	62.0	63.0	1.0	1.0	0.69	The Hut
and:	68.0	74.0	6.0	6.0	0.52	The Hut
and:	88.0	90.0	2.0	2.0	1.74	The Hut
		<u> </u>	T	I .	1	
TARC217D	199.0	226.0	27.0	20.1	0.61	Leia
including	216.0	225.0	9.0	6.7	1.59	Leia
and:	235.0	237.8	2.8	2.1	0.87	Leia
including	235.0	236.0	1.0	0.7	1.93	Leia
and:	279.4	284.0	4.6	3.4	0.66	Leia
including	280.0	281.0	1.0	0.7	1.06	Leia
also including	283.0	284.0	1.0	0.7	1.51	Leia
TARC222D	25.0	59.0	34.0	30.0	1.00	Chewy
IANUZZZU	20.0	39.0	34.0	30.0	1.00	Cilewy

Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li2O %)	Prospec
TARC225	2.0	8.0	6.0	6.0	1.09	Chewy
TARC228	113.0	138.0	25.0	20.0	1.14	Leia
TARC230D	220.0	291.7	71.7	54.9	1.00	Leia
including	224.0	227.0	3.0	2.3	1.03	Leia
also including	242.0	244.0	2.0	1.5	1.02	Leia
also including	250.0	291.7	41.7	31.9	1.51	Leia
and:	306.9	310.0	3.1	2.4	1.19	Leia
and:	319.7	344.1	24.4	18.7	0.99	Leia
			T	1	T T	
TARC231AD	252.0	281.3	29.3	29.3	0.55	Leia
and	212.0	213.0	1.0	1.0	0.80	Leia
and	286.8	304.0	17.2	17.2	0.69	Leia
and	334.1	357.5	23.4	23.4	0.89	Leia
including	334.1	345.0	10.9	10.9	1.74	Leia
TARC236	126.0	160.0	34.0	34.0	0.79	Leia
including	129.0	132.0	3.0	3.0	1.51	Leia
also including	145.0	160.0	15.0	15.0	1.27	Leia
and:	164.0	209.0	45.0	45.0	1.25	Leia
including	180.0	209.0	29.0	29.0	1.41	Leia
TARC244D	71.0	85.0	14.0	14.0	0.89	Chewy
including	72.0	84.0	12.0	12.0	1.01	Chewy
and:	113.0	124.0	11.0	11.0	1.09	Chewy
TARC259AD	213.7	319.0	105.3	105.3	1.08	Leia
including	215.0	218.0	3.0	3.0	1.51	Leia
also including	239.0	282.4	43.4	43.4	1.41	Leia
also including	288.1	315.5	27.4	27.4	1.15	Leia
and:	363.7	375.0	11.3	11.3	1.13	Leia
including	366.0	374.0	8.0	8.0	1.53	Leia
also including	366.0	366.5	0.5	0.5	3.14	Leia
and:	369.2	374.0	4.8	4.8	2.09	Leia
			T			
TARC265D	337.0	434.0	97.0	97.0	0.83	Leia
including	344.0	345.0	1.0	1.0	0.53	Leia
also including	351.0	418.0	67.0	67.0	1.09	Leia
also including	426.0	433.0	7.0	7.0	0.57	Leia

Hole ID	From (m)	To (m)	Intercept Length (m)	Est. True Width (m)	Grade (Li2O %)	Prospec
TARC271D	424.0	425.0	1.0	1.0	0.69	Leia
and:	457.0	458.0	1.0	1.0	0.69	Leia
and:	479.0	509.0	30.0	30.0	0.93	Leia
including	480.0	504.0	24.0	24.0	1.02	Leia
also including	506.0	507.0	1.0	1.0	1.40	Leia
TARC277AD	262.7	327.3	64.6	54.9	1.13	Leia
including	264.0	310.0	46.0	44.3	1.48	Leia
also including	324.0	325.0	1.0	0.8	1.60	Leia
and:	378.0	380.0	2.0	1.7	0.60	Leia
TARC279D	406.0	407.5	1.5	1.5	0.49	Leia
and:	420.0	422.0	2.0	2.0	0.51	Leia
and:	423.0	423.3	0.3	0.3	0.54	Leia
			•			
TARC312AD	263.3	278.1	14.8	14.8	1.41	Chewy
TARC314D	283.0	285.0	2.0	2.0	0.69	Leia
including	283.0	284.0	1.0	1.0	1.28	Leia
			•			
TARC316D	234.0	239.0	5.0	5.0	1.05	Chewy
TARC317D	144.0	146.0	2.0	2.0	0.65	Chewy
and:	230.0	234.8	4.8	4.8	0.96	Chewy
including	230.0	234.0	4.0	4.0	1.13	Chewy
			•			
TARC319D	165.0	166.9	1.9	1.9	1.04	Chewy
including	165.0	166.0	1.0	1.0	1.52	Chewy
and:	169.1	171.0	1.9	1.9	0.57	Chewy
including	169.1	170.0	0.9	0.9	1.04	Chewy
TARC327	42.0	48.0	6.0	6.0	0.6	The Hutt
including	45.0	48.0	3.0	3.0	1.0	The Hutt
and:	60.0	70.0	10.0	10.0	1.3	The Hutt
including	60.0	69.0	9.0	9.0	1.4	The Hutt

Table 2: Drill hole collar table – Only includes new collars or collars with changing status (Luke is excluded). Holes awaiting a diamond tail have an assay status of N/A.

	Hole ID	Hole Type	MGA Easting	MGA Northing	RL (mASL)	Total Depth	Azimuth	Dip	Assay Status	Prospect	Comments
	TADD013	DD	(m) 700,205	(m) 7,713,750	110	552.4	262	-79	Received	Leia	Complete
	TADD016	DD	700,203	7,713,922	108	492.41	257	-69	Received	Leia	Complete
		DD	700,793		106		250				Complete
	TADD019		,	7,714,677		833.9		-60	Received Received	Leia	·
	TADD020	DD	700,092	7,713,493	121	483.6	216	-76		Leia	Complete
	TADD021	DD	700,096	7,713,484	115	830	262	-78	Received	Leia	Complete
	TADD022	DD	699,932	7,713,110	107	306.3	260	-62	Pending	Leia	Complete
	TADD023	DD	699,885	7,713,034	100	275.7	273	-54	Received	Leia	Complete
	TADD024	DD	699,895	7,712,850	105	234	205	-51	NSI	Leia	Complete
<i>a</i>	TADD025	DD	700,094	7,713,487	105	437.6	249	-63	Received	Leia	Complete
	TADD026	DD	700,033	7,713,003	103	330	278	-64	Received	Leia	Complete
46	TADD027	DD	699,644	7,712,848	100	36.1	267	-62	N/A	Leia	Abandoned
	TADD028	DD	699,771	7,712,868	100	212.8	294	-74	Received	Leia	Complete
	TADD029	DD	699,764	7,712,864	107	210	286	-54	Pending	Leia	Complete
	TADD031	DD	699,598	7,712,578	100	467.9	300	-85	Pending	Leia	Complete
	TADD032	DD	699,843	7,712,934	99	260.6	270	-58	Pending	Leia	Complete
	TADD033	DD	700,048	7,713,196	104	378.0	275	-59	Pending	Leia	Complete
	TADD034	DD	700,006	7,713,245	104	7.9	264	-58	N/A	Leia	Abandoned
	TADD034A	DD	700,008	7,713,241	104	353.7	264	-58	Pending	Leia	Complete
	TAMB004	RC	700,340	7,713,180	97	45	0	-90	N/A	Logistics	Complete
	TARC029D	RCDD	700,091	7,713,248	101	Ongoing	274	-54	Pending	Leia	In Progress
	TARC040	RC	700,476	7,714,371	112	200	241	-56	Received	Han	Complete
	TARC053	RC	700,917	7,714,513	106	120.0	189	-55	Pending	The Hutt	Complete
00	TARC054	RC	700,750	7,714,513	106	75.0	231	70	Pending	The Hutt	Complete
\bigcup_{i}	TARC056	RC	700,727	7,714,548	125	216	230	-61	Received	The Hutt	Complete
	TARC058	RC	700,854	7,714,708	111	210	230	-90	NSI	The Hutt	Complete
<i>a</i>	TARC061	RC	700,694	7,714,742	125	204	231	-61	NSI	The Hutt	Complete
	TARC066	RC	700,607	7,714,628	108	192	228	-55	NSI	The Hutt	Complete
	TARC067	RC	700,618	7,714,492	107	102.0	239	-60	Pending	The Hutt	Complete
	TARC068	RC	700,598	7,714,648	102	180	230	-60	NSI	The Hutt	Complete
	TARC069	RC	700,937	7,714,665	112	258	231	-66	Received	The Hutt	Complete
	TARC071	RC	700,959	7,714,599	107	138.0	229	-70	Pending	The Hutt	Complete
	TARC073	RC	701,023	7,714,580	113	234.0	230	65	Pending	The Hutt	Complete
	TARC077	RC	700,788	7,714,820	104	150	231	-61	Received	The Hutt	Complete
ПП	TARC160AD	RC	700,031	7,712,999	85	156.0	260	-52	N/A	Leia	Pending diamond tail
	TARC193	RC	699,241	7,713,143	99	198.0	226	-55	N/A	Lando	Pending diamond tail
	TARC205	RC	699,979	7,713,773	103	114	269	-65	NSI	Chewy	Complete
	TARC213	RC	699,950	7,712,981	100	312.0	248	-54	Pending	Leia	Complete
	TARC217D	RCDD	699,976	7,713,023	110	327.8	257	-58	Received	Leia	Complete
	TARC222D	RCDD	700,004	7,713,083	97	348.6	278	-57	Received	Leia	Pending diamond tail
	TARC225	RC	699,868	7,713,432	96	246	268	-55	Received	Leia	Complete
	TARC227	RC	699,816	7,713,191	97	162.0	273	-63	Pending	Lando	Complete
	TARC228D	RC	699,874	7,713,195	97	282	266	-56	N/A	Leia	Pending diamond tail
	TARC230D	RC	700,113	7,713,179	99	402.1	270	-56	Received	Leia	Complete
	1711102000	110	, 50,110	,,,10,1/3	55	-UZ.I	210	-50	HOUGHVEU	Luiu	σοπρισισ

ſ			MGA	MGA							
	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (mASL)	Total Depth	Azimuth	Dip	Assay Status	Prospect	Comments
	TARC231AD	RCDD	700,022	7,713,281	105	368.9	268	-59	Received	Leia	Complete
	TARC236	RC	699,898	7,713,342	73	270	265	-55	Received	Leia	Complete
	TARC243D	RC	700,164	7,713,602	122	198.0	244	-58	N/A	Leia	Pending diamond tail
	TARC244AD	RC	700,048	7,713,525	110	150.0	283	-66	N/A	Chewy	Abandoned
	TARC244D	RCDD	700,050	7,713,527	106	420.3	280	-68	Received	Leia	Pending diamond tail
	TARC253D	RCDD	700,135	7,713,727	80	270.0	277	-66	N/A	Leia	Pending diamond tail
	TARC258AD	RCDD	699,890	7,712,910	102	581.9	265	-70	NSI	Leia	Complete
=	TARC259AD	RCDD	700,103	7,713,302	102	408.1	258	-56	Received	Leia	Complete
	TARC259D	RCDD	700,103	7,713,306	100	150.0	268	-56	N/A	Leia	Abandoned
	TARC262D	RCDD	700,304	7,714,088	109	150.0	264	-59	N/A	Leia	Pending diamond tail
	TARC263D	RCDD	700,303	7,714,087	102	486.3	262	-68	Pending	Leia	Complete
	TARC265D	RCDD	700,165	7,713,604	107	473.94	264	-56	Received	Leia	Complete
	TARC271D	DD	700,308	7,713,560	107	583.03	273	-62	Received	Leia	Complete
	TARC272D	DD	700,302	7,713,561	101	504.6	264	-66	Pending	Leia	Complete
	TARC273D	RCDD	700,453	7,713,548	99	402.0	276	-56	N/A	Leia	Pending diamond tail
	TARC277AD	DD	700,192	7,713,385	102	390	305	-71	Received	Leia	Complete
	TARC279D	RCDD	700,359	7,713,449	125	522.6	274	-63	Received	Leia	Complete
U	TARC295D	RC	700,303	7,713,223	90	282.0	270	-56	N/A	Leia	Pending diamond tail
	TARC298D	RCDD	700,211	7,713,166	93	353.9	260	-56	NSI	Leia	Complete
	TARC312AD	RCDD	700,606	7,714,116	100	700.1	238	-70	Received	Leia	Complete
	TARC313D	RCDD	700,602	7,714,117	109	618	251	-55	Received	Leia	Complete
	TARC314D	RCDD	700,284	7,713,378	108	438.4	288	-68	Received	Leia	Complete
	TARC316D	RC	700,480	7,713,832	106	342.0	268	-66	N/A	Han	Pending diamond tail
	TARC317D	RCDD	700,310	7,713,786	125	603.4	271	-71	Received	Leia	Complete
	TARC318D	RCDD	699,829	7,712,847	110	102.0	299	-64	N/A	Leia	Pending diamond tail
5	TARC319D	RC	700,368	7,713,713	115	550	291	-84	Received	Leia	Complete
닏	TARC320D	RC	700,504	7,714,186	82	126.0	251	-68	N/A	Leia	Pending diamond tail
	TARC321D	RC	700,211	7,713,233	96	120.0	268	-66	N/A	Leia	Pending diamond tail
	TARC322AD	RCDD	700,112	7,713,153	114	320.0	255	-67	N/A	Leia	Pending diamond tail
	TARC322D	RCDD	700,115	7,713,152	110	36	257	-64	N/A	Leia	Abandoned
	TARC323D	RCDD	700,148	7,713,649	99	470	265	-63	Pending	Leia	Complete
	TARC324D	RC	700,418	7,714,147	101	150.0	254	-64	N/A	Leia	Pending diamond tail
	TARC325D	RC	700,316	7,714,049	111	150.0	246	-75	NSI	Leia	Pending diamond tail
	TARC326	RC	699,612	7,712,880	100	270	268	-63	NSI	Leia	Complete
	TARC327	RC	700,758	7,714,720	114	90	241	-61	Received	The Hutt	Complete
	TARC328	RC	700,873	7,714,454	85	90	221	-60	NSI	The Hutt	Complete
	TARC335	RC	699,762	7,712,675	98	222	301	-54	NSI	Leia	Complete
	TARC337D	RCDD	700,356	7,713,711	113	126.0	250	-66	N/A	Leia	Pending diamond tail
	TARC341D	RCDD	699,339	7,711,958	100	108.0	296	-67	N/A	Leia	Pending diamond tail
	TARC360	RC	700,726	7,714,171	109	204.0	223	-60	Pending	Han	Complete
	TARC361	RC	700,681	7,714,132	107	150.0	219	-60	Pending	Han	Complete
ļ	TARC362	RC	700,738	7,714,118	106	204.0	220	-60	Pending	Han	Complete
	TARC363	RC	700,774	7,714,082	100	204.0	221	-61	NSI	Han	Complete

	Hole ID	Hole Type	MGA Easting (m)	MGA Northing (m)	RL (mASL)	Total Depth	Azimuth	Dip	Assay Status	Prospect	Comments
	TARC366	RC	700,833	7,714,761	116	144.0	50	-77	Pending	The Hutt	Complete
	TARC367	RC	700,992	7,714,340	107	270.0	264	-56	Pending	The Hutt	Complete
	TARC368D	RC	700,078	7,713,824	100	252.0	274	-71	Pending	Leia	Complete
	TARC370D	RCDD	700,055	7,713,630	108	150.0	296	-60	Pending	Leia	Complete
	TARC371D	RCDD	700,133	7,713,728	118	420.3	267	-54	Pending	Leia	Complete
	TARC372D	RCDD	700,165	7,713,613	120	438.3	231	-64	Pending	Leia	Complete
	TARC379	RC	700,728	7,714,075	100	360.0	270	-60	Pending	Chewy	Complete
	TARC380	RC	700,688	7,713,906	103	90	290	-60	N/A	Chewy	Abandoned
	TARC380A	RC	700,687	7,713,909	103	354	296	-61	Pending	Chewy	Complete
	TARC382	RC	700,619	7,713,830	103	396	290	-65	Pending	Chewy	Complete
QP.	TARC383	RC	700,618	7,713,835	103	Ongoing	294	-54	Pending	Chewy	In Progress
	TAWB003	RC	699,702	7,713,877	100	204	0	-90	N/A	Hydro	Complete
	TAWB004	RC	699,472	7,713,470	98	60	0	-90	N/A	Hydro	Complete

Appendix 2

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Criteria	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and' the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation and diamond drilling completed by TopDrill Drilling. All RC drilling samples were collected as 1m composites, targetted 3-5kg sub-sample was collected for every 1m interval using a static cone splitter with the sub-sample placed into calico sample bags and the bulk reject placed in rows on the ground. Diamond core samples were collected in plastic core trays, sequence checked, metre marked and oriented using the base of core orientation line. It was then cut longitudinally down the core axis (parallel to the orientation line where possible) and half the core sampled into calico bags using a minimum interval of 30cm and a maximum interval of 1m. Pegmatite intervals were assessed visually for LCT mineralisation by the rig geologist assisted by tools such as ultraviolet light and LIBS analyser. All samples with pegmatite and adjacent wall rock samples were sent to ALS laboratories in Perth for chemical analysis. The entire 3kg sub-sample was pulverised in a chrome steel bowl which was split and an aliquot obtained for a 50gm charge assay. LCT mineralisation was assessed using the MS91-PKG package which uses sodium peroxide fusion followed by dissolution and analysis with ICP-AES and ICP-MS. Additional multielement analyses (48-element suite) using 4-Acid digest ICP-MS were requested at the rig geologist's discretion but have not yet been evaluated and are not reported in this announcement.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Reverse circulation and diamond drilling with orientation surveys taken every 30m to 60m and an end of hole orientation using a Axis gyro tool. A continuous survey in and out of hole is completed at drillhole completion.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Sample recovery (poor/good) and moisture content (dry/wet) was recorded by the rig geologist in metre intervals. The static cone splitter was regularly checked by the rig geologist as part of QA/QC procedures.
		 Sub-sample weights were measured and recorded by the laboratory. No analysis of sample recovery versus grade has been made at this time.

Criteria	Criteria	Commentary
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Diamond drilling is orientated, meter marked, RQD and density data is taken and samples are recorded based on geological parameters.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RC samples were qualitatively logged by the rig geologist. The rock types were recorded as pegmatite, basalt, and dolerite/gabbro. Pegmatite intervals were assessed visually for lithium mineralisation by the rig geologist assisted by tools such as ultraviolet light and LIBS analyser. All chip trays were photographed in natural light and ultraviolet light and compiled using Sequent Ltd's Imago solution. All diamond core was qualitatively logged by a site geologist and the core trays photographed
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 3kg to 5kg sub-samples of RC chips were collected from the rig-mounted static cone splitter into uniquely numbered calico bags for each 1m interval. Diamond core is drilled with HQ or NQ diameter and is cut longitudinally down the core axis (along the orientation line where possible) with an Almonte core saw and half core samples between 30cm and 1m in length are sampled and collected in numbered calico bags. Duplicates, blanks and standards inserted at the same rate as for the RC samples. Sample sizes are appropriate to the crystal size of the material being sampled. Sub-sample preparation was by ALS laboratories using industry standard and appropriate preparation techniques for the assay methods in use. Internal laboratory standards were used, and certified OREAS standards and certified blank material were inserted into the sample stream at regular intervals by the rig geologist. Duplicates were obtained from using a duplicate outlet direct from the cyclone in the RC and a lab split in the DD at the site geologist's discretion in zones containing visual indications of mineralised pegmatite.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The RC and diamond core cuttings were analysed with MS91-PKG at ALS using sodium peroxide fusion ICP-AES for a LCT suite, fire assay for gold, and 4-acid digest ICP-AES and ICP-MS for multi-element analysis. Appropriate OREAS standards were inserted at regular intervals. Blanks were inserted at regular intervals during sampling. Certified reference material standards of varying lithium grades have been used at a rate not less than 1 per 25 samples.

Criteria	Criteria	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No independent verification of significant intersections has been made. Significant intersections were produced by an automated export from the database managers and checked by the Exploration Manager and the Managing Director. No twinned holes have been drilled at this time. Industry standard procedures guiding data collection, collation, verification, and storage were followed. No adjustment has been made to assay data as reported by the laboratory other than calculation of Li₂O% from Li ppm using a 2.153 conversion factor.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Location of drill holes were recorded by tablet GPS. Locational accuracy is +-1m in the XY and +-5m in the Z orientation. Survey priority is then replaced with DGPS on a campaign basis. All current data is in MGA94 (Zone 51). Topological control is via GPS and DEM calculated from a drone photographic survey. The DEM is accurate to approximately 1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes are spaced at 40m to 160m intervals with varying levels of infill. There is abundant pegmatite outcrop and the drilling is spaced to determine continuity along strike and down dip. Infill drilling will also aim to close-off mineralisation along strike. At this stage there is insufficient data at a sufficient spacing to determine a Mineral Resource estimate. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No fabric orientation data has been obtained from the RC holes, although some holes have been logged with DH optical televiewer (OTV) and some structural data may be determined from this. Where OTV has been used on holes drilling from the northeast into Leia, the pegmatite has been intercepted at a perpendicular orientation to the hole axis, making the intercepts close to true width. These are also estimated against the geological model. All diamond holes are oriented with a base of hole orientation line and any relevant structures and fabrics are recorded qualitatively by the site geologist and recorded in the database. All diamond holes have intercepted the pegmatite at close to perpendicular to the core axis, making the intervals close to true width. True width has been estimated from a 3D geological model built using Leapfrog software and holes are designed to intercept at true width. True width has not been estimated for holes which have potentially drilled down-dip of pegmatite bodies as the geometry of the pegmatite intersections cannot currently be determined. These holes include TARC028, TARC085, and TARC088 in previous announcements.

Criteria	Criteria	Commentary
		True width has not been estimated for pegmatites of unknown geometry (early discoveries) and instead downhole widths are provided.
Sample security	The measures taken to ensure sample security.	All samples were packaged into bulka bags and strapped securely to pallets on site and delivered by TopDrill to freight depots in Port Hedland. The samples were transported from Port Hedland to Perth ALS laboratories via Toll or Centurian freight contractors.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audit has been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status Exploration done by other parties	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 Wildcat Resources Limited Ltd owns 100% of the Tabba Tabba Project Mining Leases (M45/354; M45/375; M45/376 and M45/377) Royalties and material issues are set out in an agreement between Wildcat and GAM for Wildcat to acquire the Tabba Tabba Project as announced on 17th May 2023: https://www.investi.com.au/api/announcements/wc8/4788276b-630.pdf No known impediments. Goldrim Mining Ltd and Pancontinental Mining Ltd ("PanCon") completed 24 OHP, 59 RC and 3 DD holes between 1984 and 1991. GAM drilling of 29 RC holes in 2013. Pilbara Minerals Ltd (PLS) completed 5 diamond holes in November 2013.
Geology	Deposit type, geological setting and style of mineralisation.	The Tabba Tabba pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that intruded a sheared Archaean metagabbro. The pegmatite contains in outcrop a symmetrically disposed outer cleavlandite zone, mica zone and a megacrystic K feldspar zone with a centrally disposed quartz zone associated with an albitic replacement unit. The zones generally dip in sympathy with pegmatite margins. (Sourced from PanCon historical reports). Wildcat Resources has confirmed abundant spodumene occurs throughout the pegmatites, with petalite occurring in the northern The Hutt pegmatite prospect.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to tables in the report and notes attached thereto which provide all relevant details.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top cut off has been used. All samples represent 1m composites obtained from the RC drill rig, so no weighted averaging technique has been used to report significant intervals for RC holes. Aggregated pegmatite intercepts calculated at a 0.1% Li₂O cutoff grade with a maximum of 10m consecutive internal dilution and reporting overall intercepts with an average grade >0.5%. All smaller significant intercepts and the high-grade intervals included within broader aggregated intercepts have been separately reported and calculated using the most practicle of a geologically interpreted subdomain or a 0.3% Li₂O cut off and a maximum of 3m of internal dilution. All pegmatite intercepts listed in Appendix 1, Table 3 are calculated Lith1 or Lith2 recorded as pegmatite as a composite allowing for dilution of "other rock" where geologically acceptable. But note the following point: Minor discrepancies between pegmatite thickness and mineralised intercepts may arise due to subjective interpretation of mixed intervals of pegmatite and host rock, i.e. in RC drilling where rock 1 is logged as mafic and estimated to constitute 60% of the logged interval and rock 2 is logged as pegmatite and constitute 40%. This may mean that the true boundary of the pegmatite may be wider than logged as rock type 1. All aggregated intercepts have included separately reported significant intercepts. No metal equivalents have been used.
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Most pegmatite intervals intercepted have returned assay results >0.3% Li₂O, some are mineralised in totality, others are partially mineralised with localised zones of lithium mineralisation below 0.3%Li₂O. This is expected in fractionated, zoned pegmatite systems. Some zones have mineralisation that averages below 0.1% Li₂O. All holes in this announcement have intercepted the pegmatites at a favourable angle.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See this announcement for appropriate maps and sections.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Assays are reported using a 0.1% Li2O cut-off grade with maximum 10m of internal dilution for aggregated intercepts. Internal high-grade zones are based on a mixture of geologically interpreted domains or a 0.3% Li2O cut-off and maximum 3m of dilution where practicable. Widths are rounded to one decimal and grades to two decimals. Only aggregated intercepts above 0.5% Li₂O are reported. Data is released in total where practicable or in subsets where relevant to individual prospects.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Everything meaningful and material is disclosed in the body of the report. Geological observations have been factored into the report
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	An ongoing campaign of drilling with a minimum of two diamond rigs and a RC drill rig to confirm the nature, orientation and extent of lithium mineralisation throughout the Tabba Tabba pegmatite field. Work includes testing extensions, new targets at depth and infill drilling on existing pegmatites.